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Abstract
This paper introduces a new technique to optimally design the fractional-order But-
terworth low-pass filter in the complex F-plane. Design stability is assured by
incorporating the critical phase angle as an inequality constraint. The poles of the
proposed approximants reside on the unit circle in the stable region of the F-plane.
The improved accuracy of the suggested scheme as compared to the recently pub-
lished literature is demonstrated. A mixed-integer genetic algorithm which considers
the parallel combinations of resistors and capacitors for the Valsa network is used to
optimize the frequency responses of the fractional-order capacitor emulators as part of
the experimental verification using the Sallen–Key filter topology. The total harmonic
distortion and spurious-free dynamic range of the practical 1.5th-order Butterwoth
filter are measured as 0.13% and 62.18 dBc, respectively; the maximum and mean
absolute relative magnitude errors are 0.03929 and 0.02051, respectively.
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1 Introduction

The Riemann–Liouville definition for the fractional derivative of arbitrary order υ for
a function f (t) is given by

aD
υ
t f (t) = 1

�(n − υ)

dn

dtn

∫ t

a
(t − τ)n−υ−1 f (τ )dτ, (1)

where n ∈ Z+; n−1 < υ ≤ n; a and t are the limits of the operation; and�(·) denotes
the gamma function [13, 20, 23]. For zero initial conditions, the Laplace transform of
(1) is given by sυF(s).

Applications of fractional calculus are pervading in various engineering disciplines
[15], including fractional-order (FO) circuit theory and filter design [19]. Due to the
presence of additional design parameters or ‘tuning knobs’ (viz., υ), FO filters exhibit
amplitude, delay, and transient characteristics, which are not possible to achieve using
the classical ones [2, 11]. Generalization of integer-order filters to the FO-domain
allows the exact order (typically, a real number) to be realized; thereby, providing
precise roll-off and strict matching of design specifications [9]. Implementations of
analog FO filters involve the fractance devices (e.g., FO capacitor/inductor) [4], whose
immittance relationship is

I (s) = ksβ, (2)

where in the case of FOcapacitor, it is appropriate to consider I (s) as an admittance and
k is the pseudo-capacitance expressed in Farad/second1−β . In the case of FO inductor,
I(s) can be considered as an impedance and k is the pseudo-inductance expressed in
Henry/second1−β . In both these cases, it holds β ∈ (0, 1). The frequency-domain
expression for sβ is given by ( jω)β = ωβ∠(βπ/2), where the analog frequency
variable ω is expressed in radians per second (rad/s). Various approaches have been
reported to emulate the frequency response of sβ , [5].

The squared magnitude function of the normalized FO Butterworth filter (FOBF)
[3] is given by

HB(s)HB(−s)|s= jω = |HB( jω)|2 = 1

1 + ω2M , (3)

where M = N + α, N ∈ Z+ and α ∈ (0, 1).
In the literature, two different approaches are reported to approximate the

magnitude-frequency characteristic of the FOBF. The first technique involves mod-
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Optimized fractional-order Butterworth filter… 1803

eling in the complex s-plane using the FO [3, 10, 25] or the integer-order transfer
functions (see [16] and the references cited therein). Alternatively, FOBFs were also
designed in the complex W -plane (W = s1/q , where α = r/q; r , q ∈ Z+) using the
pole-placement algorithms [1, 18].

A recent work has demonstrated the effectiveness of the F-domain-based approach
in the reduced order modeling of FO commensurate system [17]. While realizing FO
filters with optimization techniques exist in the literature [10, 16, 25], this paper is the
first attempt to design the analog FOBF directly in the complex F-plane optimally. A
constrained optimization strategy is formulated to guarantee design stability. Relative
to the existing W -plane based techniques [1, 18], the proposed method provides the
following contributions:

1. Unlike [1], the symmetric distribution of coefficients in the denominator poly-
nomial for the integer-order Butterworth filter is also exhibited by the proposed
FOBF,

2. Higher-order FOBFs are practically realized in [1] by cascadingN th-order Butter-
worth filter with an αth-order one. In contrast, the proposed approach can directly
generate the optimal FOBF model for any value ofM,

3. Unlike [18], the all-pole structure of theMth-order proposedmodel always requires
N+2 terms, which is the same as that of the (N+1)th order Butterworth filter, and

4. Although the W -plane-based techniques [1, 18] generate a stable design, these
methods do not provide optimal pole placement in theW -plane. Consequently, the
retro-fittedmodel in the s-plane is also not an optimal one. In contrast, the proposed
constrained optimization approach guarantees both stability as well as optimal
placement of poles in the unit circle of the complex F-plane for the normalized
FOBF approximant. The corresponding s-domain-based proposed model achieves
lower error as compared to the cited literature in approximating the theoretical
magnitude response.

In the rest of the paper, Sect. 2 presents the proposed scheme; stability andmodeling
performances are analyzed in Sect. 3. Experimental results are presented in Sect. 4.
Finally, conclusions are drawn in Sect. 5.

2 Proposed technique

It is well-known that for a function F = sβ , where β ∈ (0, 1), the region of instability
in the s-plane (|θS| < 0.5π) is mapped into |θF | < 0.5βπ in the complex F-plane
[21]. Therefore, the region of stability in the F-plane is given by |θF | > 0.5βπ.

Since s = F1/β, then the squared magnitude function in the F-plane for the FOBF
(normalized) can be obtained by substituting ω = F1/β/ j in (3), as represented by

HB(F1/β)HB(−F1/β)

= 1

1 +
[(

F1/β

j

)2
]M

= 1

1 + (−F2/β)M
= 1

1 + (−1)MF2M/β
. (4)
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1804 S. Mahata et al.

Selecting β = M/(N + 1) and substituting in (4) leads to the magnitude function
as given below.

HB(F1/β)HB(−F1/β) = 1

1 + (−1)MF2(N+1)
. (5)

Thus, the F-domain-basedM th-order Butterworth filter (normalized) is modeled as
an all-pole polynomial function in F, as given by

H(F) = 1

D(F)
= 1

FN+1 + u1FN + u2FN−1 + · · · + u2F2 + u1F + 1
, (6)

where uk (k = 1, 2, …) denotes the coefficients of D(F). Recall that the classical Pth-
order (P = 1, 2, …) Butterworth filter has an analogous representation in the s-domain
[24], as given by

HP (s) = 1

sP + a1sP−1 + a2sP−2 + · · · + a2s2 + a1s + 1
. (7)

The objective function for the constrained optimization problem to achieve a stable
FOBF model in the F-plane is formulated as

f =
L∑

i=1

∣∣∣20 log10
∣∣∣HB(F1/β, ωi )HB(−F1/β, ωi )

∣∣∣ − 20 log10

∣∣∣H2(F, ωi , X)

∥∥∥ , (8)

Subject to:
∣∣θD(F)

∣∣ > θC ,

where the frequency variableω is varied with logarithmic spacing for L = 100 sample
points between 10−2 − 102 rad/s; θC = 0.5βπ denotes the critical phase (in rad);∣∣θD(F)

∣∣ represents the minimum absolute phase of the roots of D(F); and the decision
variables vector is given by

X =
{ [u1u2 · · · uN/2], N : Even

[u1u2 · · · u(N+1)/2]. N : Odd.
(9)

Thus, the dimension (d) of the problem is N /2 for even values of N and (N+1)/2 if
N is an odd number. To maintain conformity with the classical Butterworth filter, the
lower bound of X is set as 0 and the upper bound (Ub) is chosen as the values of the
coefficients for the Pth-order Butterworth filter, where P = N + 1, as given by

Ub =
{ [a1a2 · · · aN/2], N : Even

[a1a2 · · · a(N+1)/2]. N : Odd.
(10)

Finally, the s-domain transfer function of the proposed FOBF (normalized) can be
obtained as

H(s) = 1

s(N+1)β + u1sNβ + u2s(N−1)β + · · · + u2s2β + u1sβ + 1
. (11)
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Table 1 Decision variables vector and pole locations of the proposed FOBFs

M X Roots of D(F)

1.5 [0.6400] −0.3200 ± 0.9474i

2.5 [1.2325] −1, −0.1162 ± 0.9932i

2.8 [1.7030] −1, −0.3515 ± 0.9362i

3.2 [1.2068 2.2975] −0.1727 ± 0.9850i, −0.4307 ± 0.9025i

3.6 [2.0929 2.5454] −0.1525 ± 0.9883i, −0.8939 ± 0.4482i

4.2 [1.8412 2.8654] −1, −0.4057 ± 0.9140i,−0.0149 ± 0.9999i

3 Performance analysis usingMATLAB simulations

The applicability of metaheuristic algorithms for solving constrained optimization
problems is well established in the literature [14]. The search process of these algo-
rithms involves a combination of stochastic and deterministic rules. These methods
employ multiple agents that explore the hyper-dimensional problem search space in
the initial stages, followed by local search in the later stages. This is unlike the ‘fmin-
search’ function inMATLAB employed in [25], where the unconstrained optimization
technique involves a direct search strategy based on the Nelder–Mead simplex algo-
rithm. The iterative nature of the metaheuristic search process may lead to higher
computational time as compared to the traditional optimization algorithms. It is worth
noting that metaheuristic algorithms can only achieve a near-global optimal solution.
Furthermore, a closed-form solution is also not attained by a metaheuristic technique.
However, these methods have established a niche due to their ease of implementation
and ability to effectively handle linear or non-linear, convex or non-convex, multi-
modal, multidimensional, unconstrained, and constrained optimization problems.

The proposed optimization technique is implemented in MATLAB using the
constrained composite differential evolution (C2oDE) algorithm [27]. C2oDE has
demonstrated effective performance in solving the benchmark optimization problems
provided in IEEE CEC2006 and CEC2010 test suites. In this work, the basic param-
eters for C2oDE are set as population size = 100 and termination condition = 10000d
function evaluations, while the internal parameters are the same as specified in [27].
The accuracy and stability of the proposed FOBFs are investigated by considering
various design orders. Table 1 presents the optimal value of X obtained for design
cases such as M = 1.5, 2.5, 2.8, 3.2, 3.6, and 4.2. The following observations can be
made about the pole locations and stability of the designed FOBFs based on the results
shown in Table 2:

1. The roots of D(F) exhibit a magnitude of 1, which implies that all the poles of the
proposed FOBF reside on the unit circle in the F-plane. A comparable situation
exists for the pole locations of the classical Butterworth filter (normalized), where
the poles are located on the unit circle in the left-half s-plane [24].

2. The region of stability in the F-plane is larger than in the s-plane for β < 1. All
the proposed models achieve stability in the F-plane since all the poles of H(F)
have a negative real part. Note also from Table 2 that

∣∣θD(F)

∣∣ > θC for all the
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1806 S. Mahata et al.

Table 2 Phase of the roots of D(F), critical phase and minimum absolute phase angle of the roots of the
proposed FOBFs

M ∠ Roots of D(F) θC (◦)
∣∣θD(F)

∣∣ (◦)
1.5 ±108.66◦ 67.50 108.66

2.5 ±96.67◦, 180◦ 74.97 96.67

2.8 ±110.58◦, 180◦ 83.98 110.58

3.2 ±99.94◦, ±115.51◦ 72.00 99.94

3.6 ±98.77◦, ±153.37◦ 81.00 98.77

4.2 ±90.85◦,±113.93◦, 180◦ 75.60 90.85

Fig. 1 Locations of poles in the F-plane for the proposed 2.8th-order Butterworth filter

cases, which further confirms the attainment of stability criteria in the F-domain
for all the proposed FOBFs.

3. For odd values of N, the poles of H(F) exist in complex conjugate form, whereas,
for even values ofN, a pole also resides atF =−1. As a representative, the locations
of poles in theF-plane for the proposed 2.8th-order Butterworth filter are presented
in Fig. 1.

Table 3 shows the proposed models after transformation from F-domain to the
s-domain. If M is an irrational number or it leads to the occurrence of a recurring
decimal for β, then β may be truncated to three digits after the decimal point (viz.,
H(s) for M = 2.5, 2.8).

The absolute relative magnitude error (ARME) metric, as defined below, is used to
evaluate the modeling accuracy.

ARME =
∣∣∣∣ |H( jω)| − |HB( jω)|

|HB( jω)|
∣∣∣∣ . (12)
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Table 3 s-Domain transfer function of the proposed FOBFs

M H (s)

1.5
1

s1.5 + 0.6400s0.75 + 1

2.5
1

s2.5 + 1.2325s1.666 + 1.2325s0.833 + 1

2.8
1

s2.8 + 1.7030s1.866 + 1.7030s0.933 + 1

3.2
1

s3.2 + 1.2068s2.4 + 2.2975s1.6 + 1.2068s0.8 + 1

3.6
1

s3.6 + 2.0929s2.7 + 2.5454s1.8 + 2.0929s0.9 + 1

4.2
1

s4.2 + 1.8412s3.36 + 2.8654s2.52 + 2.8654s1.68 + 1.8412s0.84 + 1

Fig. 2 Comparison of magnitude and ARME responses with the FOBFs published in the literature for
2.8th-order Butterworth filter

Figure 2 (top) shows the magnitude response comparison of the proposed 2.8th-
order Butterworth filter with the corresponding model published in [18, 25]. The
reported model in [18] exhibits peaking near the cut-off frequency, whereas the roll-
off behavior of the FOBF in [25] deviates from the theoretical one. These findings are
further confirmed from the ARME comparison plots presented in Fig. 2 (bottom). The
magnitude response of the proposed 3.2th-order Butterworth filter is compared with
that of the published literature [18], as shown in Fig. 3. The reported design exhibits
peaking in the magnitude response near the normalized cut-off frequency, whereas,
the proposed model stays in proximity to the theoretical characteristic throughout the
design range.

The maximum (max) and mean (evaluated using 1000 sampled frequency points
with logarithmic spacing in the interval [10−3, 103] rad/s) ARME comparisons with
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1808 S. Mahata et al.

Fig. 3 Comparison ofmagnitude responses with the FOBF published in [18] for the 3.2th-order Butterworth
filter

Table 4 Maximum and mean ARME comparisons with the FOBFs reported in the recent literature

M FOBF Model Max ARME Mean ARME

1.5 [18] Pole-placement 0.07590 0.02862

Optimal (Present work) 0.03293 0.01402

2.5 [18] Pole-placement 0.30990 0.05870

[25] Pseudo-differential 0.95980 0.25870

Optimal (Present work) 0.18770 0.02644

2.8 [18] Pole-placement 0.71540 0.10870

[25] Pseudo-differential 0.39190 0.13560

Optimal (Present work) 0.04280 0.01105

3.2 [18] Pole-placement 0.43650 0.04131

Optimal (Present work) 0.03361 0.01443

3.6 [18] Pole-placement 0.15120 0.03979

Optimal (Present work) 0.08938 0.02435

4.2 [18] Pole-placement 0.42250 0.06142

Optimal (Present work) 0.29690 0.03460

the recently published literature are presented in Table 4. The proposed FOBFs achieve
the least error for all the considered cases, thus demonstrating superior accuracy. The
ARME comparison plots with [18] forM = 1.5, 2.5, 3.2, 3.6, and 4.2 are presented in
Fig. 4 to justify the improved accuracy of the proposed approach graphically.

Further investigations are conducted by considering the design of (2 + α)-order
Butterworth filter with α varying from 0.01 to 0.99 in steps of 0.01. Results shown in
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Fig. 4 ARME comparison plots between the proposed optimal FOBFs (solid blue) and the FOBFs designed
using the W -plane-based pole-placement method in [18] (dashed red)

Fig. 5 Variations of u1, θC ,
∣∣θD(F)

∣∣, and comparison with those in [25] for the proposed (2 + α)-order
Butterworth filters

Fig. 5 demonstrate that: (i) coefficient u1 increases as α is increased and u1 approaches
2 as M approaches 3. It is noteworthy that the third-order Butterworth polynomial is
given by s3 + 2s2 + 2s + 1 [24], (ii)

∣∣θD(F)

∣∣ exceeds θC throughout the design range,
which justifies the stability criterion in the F-plane for the proposed FOBFs, and
(iii) the proposed designs outperform the results in [25] regarding the mean ARME
for M ∈ [2.10, 2.99].
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Fig. 6 Circuit realization of the proposed 1.5th order Butterworth filter using the Sallen–Key filter topology

4 Measurement results

The magnitude-frequency characteristic of the proposed 1.5th-order Butterworth fil-
ter with the transfer function as shown in Table 2 and a design cut-off frequency of
10,000 rad/s (f 0 = 1.5915 kHz) is verified experimentally. The filter is realized using
the unity-gain Sallen–Key topology no. 1 of catalog in [22]. The operational ampli-
fier (op-amp) based proposed circuit (see Fig. 6) employs fractional-order capacitors
(FOCs) of an order β = 0.75 (ϕ = −67.5◦) with pseudo-capacitances of Cβ1 =
100 nF·s−0.25 and Cβ2 = 1 µF·s−0.25 in place of the conventional capacitors.

A mixed-integer genetic algorithm [12], upgraded to consider parallel combina-
tions of resistors and capacitors, was used for optimizing the phase and magnitude
responses of the FOCs. The corresponding 6 branch Valsa RC ladder network-based
FOC emulator [26] is also illustrated in Fig. 6. It provides a 7th-order approximation
of the FOC, which has an admittance in the following general form

Y (s) = 1

Z(s)
= 1

R0
+ sC0 +

6∑
k=1

sCk

sRkCk + 1
. (13)

Electronic IndustriesAlliance (EIA) standardE96 (1% tolerance) andE12 (10% tol-
erance) compliant resistor and capacitor values, respectively, which are commercially
available in 0402 size RC kits [7, 8], were used to construct the FOCs. Computed
component values of the Valsa network in the desired constant phase zone (CPZ)
[101, 105] Hz are listed in Table 5. The photographs of the fabricated FOC emulators
with dimensions of 15 mm × 17 mm are depicted in Fig. 7. The ideal (target), simu-
lated (nominal), and measured phase, magnitude, and pseudo-capacitance responses
vs. frequency are shown in Fig. 8. Normalized histograms (%) of phase angle and
pseudo-capacitance errors in the desired CPZ and the zoomed-in magnitude plot
around the 103 Hz region are given as an inset. Simulations and Monte Carlo (MC)
statistical analysis were performed in OrCAD Capture CIS 10.3 software. The MC
was performed with passive element tolerances based on used datasheets for Gaussian
distribution, with fixed random number seed value 17533 and 1000 runs to observe
potential effects due to manufacturing processes.
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Table 5 Passive element values for the fractional-order capacitors using the Valsa network

Elements Cβ1 = 100 nF·s−0.25 Cβ2 = 1 µF·s−0.25

R0(�),C0(F) 10M || 10M, 270p || 1.8n 240k, 2.7n || 18n

R1(�),C1(F) 1M || 10M, 2.7n || 15n 130k, 47n || 47n

R2(�),C2(F) 30k || 33k, 470p || 3.3n 499 || 1.21k, 3.3n || 22n

R3(�),C3(F) 270k, 2.2n || 6.8n 1.6k, 2.7n || 39n

R4(�),C4(F) 120k || 150k, 180p || 5.6n 118 || 130, 2.7n || 15n

R5(�),C5(F) 3.6k, 560p || 1.8n 12k || 18k, 33n || 39n

R6(�),C6(F) 1.24k || 1.5k, 680p || 1n 40.2k, 47n || 47n

Fig. 7 Photograph of the fractional-order capacitor emulator along with the Analog Discovery 2 Impedance
Analyzer

The impedancemeasurementswere carried out using theDigilentAnalogDiscovery
2 device (see Fig. 7) in the frequency range of 3 Hz to 300 kHz (1001 logarithmically
spaced points per five decades) with a sinusoidal input signal of 100 mVrms. The
performances of the FOCs in terms of relevant criteria, such as absolute phase angle
deviation (APAD), phase band (PB), absolute pseudo-capacitance deviation (APCD),
pseudo-capacitance band (PCB), etc., are reported in Table 6. The APAD values for
the MC@1 kHz of Cβ1/Cβ2 are 3.123◦/3.052◦, respectively, while the PB metrics
are ±2.554◦/±2.574◦. Similarly, APCD and PCB values for the MC@1 kHz are
[12.480/132.879] nF·s−0.25 and [±10.266/±124.558] nF·s−0.25, respectively. The
measured APAD values of Cβ1/Cβ2 are 1.035◦/1.281◦, respectively, while the PB
metrics are yielded as ±0.622◦/±0.841◦. The measured APCD and PCB values are
obtained as [2.123/36.029] nF·s−0.25 and [±1.445/±16.819] nF·s−0.25, respectively.
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1812 S. Mahata et al.

Fig. 8 Target (ideal), simulated, and measured phase, magnitude, and pseudo-capacitance-frequency
responses of the 6 branch Valsa network in the frequency range of 3 Hz to 300 kHz: a Cβ1 =

100 nF·s−0.25, b Cβ2 = 1 µF·s−0.25. Normalized histograms (%) of phase angle and pseudo-capacitance
errors in CPZ = 10 Hz to 100 kHz are shown as an inset

The comparison of measured FOC behavior with the simulated (nominal) and MC
indices highlight excellent matching in the whole desired CPZ.

The proposed FOBF was assembled on a breadboard and EIA standard-compliant
E96 series (1% tolerance) through-hole TESLA Lanškroun resistors (RF1 = 3.6 k�
and 49.9 � in series, RF2 = 2.74 k�) were used. The photograph of the hardware
setup is presented in Fig. 9. The supply voltage of 5 V for the op-amp LT1360 [6]
was provided from the Agilent E3630A power supply. The magnitude data points
for 641 logarithmic spaced frequency points in the range [101, 105] Hz were mea-
sured using the OMICRON Lab Bode 100 network analyzer and displayed using the
Bode Analyzer Suite software. The level of the testing harmonic signal was set to
1.25 VPP. The receiver bandwidth of the analyzer was fixed at 300 Hz. The
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Fig. 9 Photograph of the experimental set-up to validate the proposed FOBF

Fig. 10 Measured magnitude-frequency characteristic and ARME response of the proposed 1.5th-order
Butterworth filter

time-domain behavior of the filter was observed on Agilent InfiniiVision DSO-X
2002A digital storage oscilloscope. A peak-to-peak sinusoidal voltage (VPP) of 1.25 V
was applied to the filter circuit from the Agilent 33521A function/arbitrary waveform
generator.

The magnitude-frequency response measurement of the proposed Sallen–Key filter
is compared with the ideal characteristic in Fig. 10 (top). It may be observed that the
magnitude response of the practical filter conforms with the ideal behavior for the
considered bandwidth. From the zoomed-in plot, it is confirmed that the magnitude
of the proposed implementation at f 0 also stays in proximity with the theoretical
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(a) (b)
Fig. 11 Experimental a input–output waveforms observed in an oscilloscope and b Fast Fourier Transform
spectrum for the proposed 1.5th order Butterworth filter with an input frequency of fH = 1.59 kHz

value (−3.0 dB). The ARME response of the constructed filter is presented in Fig. 10
(bottom). The mean ARME value is obtained as 0.02051, whereas the max ARME of
0.03929 occurs at 434 Hz.

The time-domain response of the practical filter circuit is measured at the half-
power frequency f H = 1.59 kHz, as shown in Fig. 11a. For the applied VPP of 1.25 V,
the peak-to-peak output voltage at f H was obtained as 0.88 V, which attains an excel-
lent agreement with the theoretical anticipation of 0.88375 V. The Fourier spectrum of
the measured output signal displayed up to the seventh harmonic is shown in Fig. 11b.
Achieving a large Spurious-Free Dynamic Range (SFDR) and a small Total Harmonic
Distortion (THD) for a practical filter circuit is desirable. The SFDR and the THD,
evaluated from the plotted harmonics, are obtained as 62.18 dBc and 0.13%, respec-
tively, which justifies the effectiveness of the proposed implementation.

5 Conclusions

An F-plane-based constrained optimization approach is presented for the first time
to design the FOBF with guaranteed stability. Similarities with the classical Butter-
worth low-pass filter and advantages over theW -plane-based FOBFs are highlighted.
Superior accuracy over the recent literature about the maximum and mean ARME
is demonstrated through several examples. The proposed FOBF of order 1.5 was
realized using the Sallen–Key filter employing fractional-order capacitor emulators.
Experimental results exemplified an excellent agreement with the theoretical mag-
nitude response. However, the proposed metaheuristic optimization approach based
on C2oDE algorithm has two limitations: (i) it does not guarantee the generation
of global optimal solution, and (ii) a closed-form solution is not attainable. Further
research from both the optimization and the fractional calculus community is needed
to alleviate these limitations.
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