• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Fen Edebiyat Fakültesi / Faculty of Arts and Sciences
  • Matematik Bölümü / Department of Mathematics
  • FEF - Makale Koleksiyonu | Matematik Bölümü / Department of Mathematics
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Fen Edebiyat Fakültesi / Faculty of Arts and Sciences
  • Matematik Bölümü / Department of Mathematics
  • FEF - Makale Koleksiyonu | Matematik Bölümü / Department of Mathematics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Close-to-convex functions defined by fractional operator

Thumbnail

View/Open

Publisher's Version (84.78Kb)

Date

2013

Author

Aydoğan, Seher Melike
Kahramaner, Yasemin
Polatoğlu, Yaşar

Metadata

Show full item record

Citation

Aydoğan, S. M., Kahramaner, Y. & Polatoğlu, Y. (2013). Close-to-convex functions defined by fractional operator. Applied Mathematical Sciences, 7(53-56), 2769-2775. doi:10.12988/ams.2013.13246

Abstract

Let S denote the class of functions f(z) = z + a2z2+... analytic and univalent in the open unit disc D = {z ∈ C||z|<1}. Consider the subclass and S* of S, which are the classes ofconvex and starlike functions, respectively. In 1952, W. Kaplan introduced a class of analyticfunctions f(z), called close-to-convex functions, for which there existsφ(Z) ∈ C, depending on f(z) with Re( f′(z)/φ′(z) ) > 0 in , and prove that every close-to-convex function is univalent. The normalized class of close-to-convex functions denoted by K. These classesare related by the proper inclusions C ⊂ S* ⊂ K ⊂ S. In this paper, we generalize the close-to-convex functions and denote K(λ) the class of such functions. Various properties of this class of functions is alos studied.

Source

Applied Mathematical Sciences

Volume

7

Issue

53-56

URI

https://hdl.handle.net/11729/1920
https://dx.doi.org/10.12988/ams.2013.13246

Collections

  • FEF - Makale Koleksiyonu | Matematik Bölümü / Department of Mathematics [218]
  • Scopus İndeksli Makale Koleksiyonu [935]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.