• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • MF - Makale Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • MF - Makale Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid high dimensional model representation (HHDMR) on the partitioned data

Thumbnail

View/Open

Publisher's Version (289.9Kb)

Date

2006-01-01

Author

Tunga, Mehmet Alper
Demiralp, Metin

Metadata

Show full item record

Citation

Tunga, M. A. & Demiralp, M. (2006). Hybrid high dimensional model representation (HHDMR) on the partitioned data. Journal of Computational and Applied Mathematics, 185(1), 107-132. doi:10.1016/j.cam.2005.01.030

Abstract

A multivariate interpolation problem is generally constructed for appropriate determination of a multivariate function whose values are given at a finite number of nodes of a multivariate grid. One way to construct the solution of this problem is to partition the given multivariate data into low-variate data. High dimensional model representation (HDMR) and generalized high dimensional model representation (GHDMR) methods are used to make this partitioning. Using the components of the HDMR or the GHDMR expansions the multivariate data can be partitioned. When a cartesian product set in the space of the independent variables is given, the HDMR expansion is used. On the other band, if the nodes are the elements of a random discrete data the GHDMR expansion is used instead of HDMR. These two expansions work well for the multivariate data that have the additive nature. If the data have multiplicative nature then factorized high dimensional model representation (FHDMR) is used. But in most cases the nature of the given multivariate data and the sought multivariate function have neither additive nor multiplicative nature. They have a hybrid nature. So, a new method is developed to obtain better results and it is called hybrid high dimensional model representation (HHDMR). This new expansion includes both the HDMR (or GHDMR) and the FHDMR expansions through a hybridity parameter. In this work, the general structure of this hybrid expansion is given. It has tried to obtain the best value for the hybridity parameter. According to this value the analytical structure of the sought multivariate function can be determined via HHDMR.

Source

Journal of Computational and Applied Mathematics

Volume

185

Issue

1

URI

https://hdl.handle.net/11729/237
http://dx.doi.org/10.1016/j.cam.2005.01.030

Collections

  • MF - Makale Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering [67]
  • Scopus İndeksli Makale Koleksiyonu [915]
  • WoS İndeksli Makale Koleksiyonu [929]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.