Show simple item record

dc.contributor.authorMangalore, Deepak Shettyen_US
dc.contributor.authorKuncham, Syam Prasaden_US
dc.contributor.authorPanackal, Harikrishnanen_US
dc.date.accessioned2021-07-28T13:40:43Z
dc.date.available2021-07-28T13:40:43Z
dc.date.issued2021
dc.identifier.citationMangalore, D. S., Kuncham, S. P. & Panackal, H. (2021). Fuzzy congruence on MΓ−groups. TWMS Journal of Applied and Engineering Mathematics, 11(3), 826-838.en_US
dc.identifier.issn2146-1147
dc.identifier.issn2587-1013
dc.identifier.urihttps://hdl.handle.net/11729/3201
dc.identifier.urihttp://jaem.isikun.edu.tr/web/index.php/archive/112-vol11-no3/742
dc.description.abstractIn this paper, we consider an algebriac structure MΓ− group, which is a generalization of both the concepts module over a nearring and a gamma nearring, introduced by Satyanarayana [12]. In this paper, we define a fuzzy congruence on MΓ−module and obtain the one-one correspondence between the fuzzy congruences and fuzzy ideals on MΓ−groups. Further, we establish various related results between the congruences and ideals of MΓ−groups.en_US
dc.language.isoengen_US
dc.publisherIşık University Pressen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectCongruenceen_US
dc.subjectNearring moduleen_US
dc.subjectMΓ−groupen_US
dc.titleFuzzy congruence on MΓ−groupsen_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.relation.journalTWMS Journal of Applied and Engineering Mathematicsen_US
dc.identifier.volume11
dc.identifier.issue3
dc.identifier.startpage826
dc.identifier.endpage838
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess