Total least squares registration of 3D surfaces

dc.authorid0000-0002-3987-6435
dc.authorid0000-0002-1510-8677
dc.authorid0000-0003-1562-1216
dc.authorid0000-0002-8499-2654
dc.contributor.authorAydar, Umuten_US
dc.contributor.authorAkça, Mehmet Devrimen_US
dc.contributor.authorAltan, Mehmet Orhanen_US
dc.contributor.authorAkyılmaz, Orhanen_US
dc.date.accessioned2019-08-31T12:10:23Z
dc.date.accessioned2019-08-05T16:04:56Z
dc.date.available2019-08-31T12:10:23Z
dc.date.available2019-08-05T16:04:56Z
dc.date.issued2013-10-16
dc.departmentIşık Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.departmentIşık University, Faculty of Engineering, Department of Civil Engineeringen_US
dc.description.abstractCo-registration of point clouds of partially scanned objects is the first step of the 3D modeling workflow. The aim of coregistration is to merge the overlapping point clouds by estimating the spatial transformation parameters. In computer vision and photogrammetry domain one of the most popular methods is the ICP (Iterative Closest Point) algorithm and its variants. There exist the 3D Least Squares (LS) matching methods as well (Gruen and Akca, 2005). The co-registration methods commonly use the least squares (LS) estimation method in which the unknown transformation parameters of the (floating) search surface is functionally related to the observation of the (fixed) template surface. Here, the stochastic properties of the search surfaces are usually omitted. This omission is expected to be minor and does not disturb the solution vector significantly. However, the a posteriori covariance matrix will be affected by the neglected uncertainty of the function values of the search surface. . This causes deterioration in the realistic precision estimates. In order to overcome this limitation, we propose a method where the stochastic properties of both the observations and the parameters are considered under an errors-in-variables (EIV) model. The experiments have been carried out using diverse laser scanning data sets and the results of EIV with the ICP and the conventional LS matching methods have been compared.en_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationAydar, U., Akça, M. D., Altan, M. O. & Akyılmaz, O. (2013). Total least squares registration of 3D surfaces. Paper presented at the , 2(5) 25-30. doi:10.5194/isprsannals-II-5-W2-25-2013en_US
dc.identifier.doi10.5194/isprsannals-II-5-W2-25-2013
dc.identifier.endpage30
dc.identifier.issn2194-9042
dc.identifier.issue5W2
dc.identifier.scopus2-s2.0-85048907329
dc.identifier.scopusqualityN/A
dc.identifier.startpage25
dc.identifier.urihttps://hdl.handle.net/11729/1908
dc.identifier.urihttps://dx.doi.org/10.5194/isprsannals-II-5-W2-25-2013
dc.identifier.volume2
dc.indekslendigikaynakScopusen_US
dc.institutionauthorAkça, Mehmet Devrimen_US
dc.institutionauthorid0000-0002-1510-8677
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherCopernicus GmbHen_US
dc.relation.ispartofISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciencesen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLaser scanningen_US
dc.subjectMatchingen_US
dc.subjectPoint Clouden_US
dc.subjectRegistrationen_US
dc.subjectTotal Least Squaresen_US
dc.titleTotal least squares registration of 3D surfacesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
1908.pdf
Boyut:
805.82 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Publisher's Version