Improving the calibration time of traffic simulation models using parallel computing technique

dc.authorid0000-0001-5425-0572
dc.authorid0000-0002-2789-8645
dc.authorid0000-0001-8522-3382
dc.authorid0000-0001-9113-3316
dc.contributor.authorDadashzadeh, Nimaen_US
dc.contributor.authorErgün, Muraten_US
dc.contributor.authorKesten, Ali Sercanen_US
dc.contributor.authorZura, Marijanen_US
dc.date.accessioned2020-02-19T04:31:04Z
dc.date.available2020-02-19T04:31:04Z
dc.date.issued2019-06
dc.departmentIşık Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.departmentIşık University, Faculty of Engineering, Department of Civil Engineeringen_US
dc.description.abstractThe calibration procedure for traffic simulation models can be a very time-consuming process in the case of a large-scale and complex network. In the application of Evolutionary Algorithms (EA) such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) for calibration of traffic simulation models, objective function evaluation is the most time-consuming step in such calibration problems, because EA has to run a traffic simulation and calculate its corresponding objective function value once for each set of parameters. The main contribution of this study has been to develop a quick calibration procedure for the parameters of driving behavior models using EA and parallel computing techniques (PCTs). The proposed method was coded and implemented in a microscopic traffic simulation software. Two scenarios with/without PCT were analyzed using the developed methodology. The results of scenario analysis show that using an integrated calibration and PCT can reduce the total computational time of the optimization process significantly-in our experiments by 50%-and improve the optimization algorithm's performance in a complex optimization problem. The proposed method is useful for overcoming the limitation of computational time of the existing calibration methods and can be applied to various EAs and traffic simulation software.en_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationDadashzadeh, N., Ergün, M., Kesten, A. S. & Zura, M. (2019). Improving the calibration time of traffic simulation models using parallel computing technique. Paper presented at the 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 1-7. doi:10.1109/MTITS.2019.8883322en_US
dc.identifier.doi10.1109/MTITS.2019.8883322
dc.identifier.endpage7
dc.identifier.isbn9781538694848
dc.identifier.isbn9781538694855
dc.identifier.scopus2-s2.0-85074905002
dc.identifier.scopusqualityN/A
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/11729/2253
dc.identifier.urihttps://dx.doi.org/10.1109/MTITS.2019.8883322
dc.identifier.wosWOS:000556119800019
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakConference Proceedings Citation Index – Science (CPCI-S)en_US
dc.institutionauthorKesten, Ali Sercanen_US
dc.institutionauthorid0000-0001-8522-3382
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBehavior modelsen_US
dc.subjectBus priorityen_US
dc.subjectBusesen_US
dc.subjectCalibrationen_US
dc.subjectCalibration problemsen_US
dc.subjectCalibration timeen_US
dc.subjectComplex networksen_US
dc.subjectComplex optimization problemsen_US
dc.subjectComputer softwareen_US
dc.subjectCorresponding objective function valueen_US
dc.subjectEAen_US
dc.subjectEvolutionary computationen_US
dc.subjectGenetic algorithmen_US
dc.subjectGenetic algorithmsen_US
dc.subjectHighway traffic controlen_US
dc.subjectIntegrated calibrationen_US
dc.subjectIntelligent systemsen_US
dc.subjectIntelligent vehicle highway systemsen_US
dc.subjectIntersectionsen_US
dc.subjectLinear programmingen_US
dc.subjectMicroscopic traffic simulation softwareen_US
dc.subjectMicroscopic traffic simulationen_US
dc.subjectObjective function evaluationen_US
dc.subjectObjective function valuesen_US
dc.subjectOptimizationen_US
dc.subjectOptimization algorithmen_US
dc.subjectOptimization algorithmsen_US
dc.subjectParallel computing techniqueen_US
dc.subjectParallel processingen_US
dc.subjectParallel computingen_US
dc.subjectParallel computing techniquesen_US
dc.subjectParallel Hybrid GAPSOen_US
dc.subjectParallel hybrid PSOGAen_US
dc.subjectParallel hybridsen_US
dc.subjectParallel processing systemsen_US
dc.subjectParameter estimationen_US
dc.subjectParticle swarm optimisationen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectQuick calibration procedureen_US
dc.subjectSociologyen_US
dc.subjectStatisticsen_US
dc.subjectTime-consuming processen_US
dc.subjectTime-consuming stepen_US
dc.subjectTotal computational timeen_US
dc.subjectTraffic controlen_US
dc.subjectTraffic engineering computingen_US
dc.subjectTraffic simulation modelsen_US
dc.subjectTraffic signalsen_US
dc.subjectTraffic simulation modelen_US
dc.subjectVISSIMen_US
dc.titleImproving the calibration time of traffic simulation models using parallel computing techniqueen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
2253.pdf
Boyut:
753.86 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Publisher's Version
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: