CNN-Based deep learning architecture for electromagnetic imaging of rough surface profiles
dc.authorid | 0000-0002-8428-4404 | |
dc.authorid | 0000-0001-5168-4367 | |
dc.authorid | 0000-0003-2966-5623 | |
dc.contributor.author | Aydın, İzde | en_US |
dc.contributor.author | Budak, Güven | en_US |
dc.contributor.author | Sefer, Ahmet | en_US |
dc.contributor.author | Yapar, Ali | en_US |
dc.date.accessioned | 2022-09-01T13:06:08Z | |
dc.date.available | 2022-09-01T13:06:08Z | |
dc.date.issued | 2022-10 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Electrical-Electronics Engineering | en_US |
dc.description.abstract | A convolutional neural network (CNN) based deep learning (DL) technique for electromagnetic imaging of rough surfaces separating two dielectric media is presented. The direct scattering problem is formulated through the conventional integral equations and the synthetic scattered field data is produced by a fast numerical solution technique which is based on Method of Moments (MoM). Two different special CNN architectures are designed and implemented for the solution of the inverse rough surface imaging problem wherein both random and deterministic rough surface profiles can be imaged. It is shown by a comprehensive numerical analysis that the proposed deep-learning (DL) inversion scheme is very effective and robust. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Aydın, İ., Budak, G., Sefer, A. & Yapar, A. (2022). CNN-Based deep learning architecture for electromagnetic imaging of rough surface profiles. IEEE Transactions on Antennas and Propagation, 70(10), 9752-9763. doi:10.1109/TAP.2022.3177493 | en_US |
dc.identifier.doi | 10.1109/TAP.2022.3177493 | |
dc.identifier.endpage | 9763 | |
dc.identifier.issn | 0018-926X | |
dc.identifier.issn | 1558-2221 | |
dc.identifier.issue | 10 | |
dc.identifier.startpage | 9752 | |
dc.identifier.uri | https://hdl.handle.net/11729/4811 | |
dc.identifier.uri | http://dx.doi.org/10.1109/TAP.2022.3177493 | |
dc.identifier.volume | 70 | |
dc.identifier.wos | WOS:000880709700101 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Sefer, Ahmet | en_US |
dc.institutionauthorid | 0000-0001-5168-4367 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | IEEE Transactions on Antennas and Propagation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Convolutional neural network | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Electromagnetics | en_US |
dc.subject | Electromagnetics | en_US |
dc.subject | Imaging | en_US |
dc.subject | Inverse problems | en_US |
dc.subject | Inverse scattering problems | en_US |
dc.subject | Rough surface imaging | en_US |
dc.subject | Rough surfaces | en_US |
dc.subject | Surface roughness | en_US |
dc.subject | Surface treatment | en_US |
dc.subject | Surface waves | en_US |
dc.subject | Convolution | en_US |
dc.subject | Integral equations | en_US |
dc.subject | Method of moments | en_US |
dc.subject | Network architecture | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Numerical methods | en_US |
dc.subject | Surface measurement | en_US |
dc.subject | Surface scattering | en_US |
dc.subject | Network-based | en_US |
dc.subject | Surface imaging | en_US |
dc.subject | Inverse scattering | en_US |
dc.subject | Neural-network | en_US |
dc.subject | Reconstruction | en_US |
dc.subject | Classification | en_US |
dc.subject | 2-D | en_US |
dc.title | CNN-Based deep learning architecture for electromagnetic imaging of rough surface profiles | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- CNN_Based_deep_learning_architecture_for_electromagnetic_imaging_of_rough_surface_profiles.pdf
- Boyut:
- 2.33 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: