ViLDAR-Visible light sensing-based speed estimation using vehicle headlamps

Yükleniyor...
Küçük Resim

Tarih

2019-11

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IEEE

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The introduction of light emitting diodes (LED) in automotive exterior lighting systems provides opportunities to develop viable alternatives to conventional communication and sensing technologies. Most of the advanced driver-assist and autonomous vehicle technologies are based on Radio Detection and Ranging (RADAR) or Light Detection and Ranging (LiDAR) systems that use radio frequency or laser signals, respectively. While reliable and real-time information on vehicle speeds is critical for traffic operations management and autonomous vehicles safety, RADAR or LiDAR systems have some deficiencies especially in curved road scenarios where the incidence angle is rapidly varying. In this paper, we propose a novel speed estimation system so-called the Visible Light Detection and Ranging (ViLDAR) that builds upon sensing visible light variation of the vehicle's headlamp. We determine the accuracy of the proposed speed estimator in straight and curved road scenarios. We further present how the algorithm design parameters and the channel noise level affect the speed estimation accuracy. For wide incidence angles, the simulation results show that the ViLDAR outperforms RADAR/LiDAR systems in both straight and curved road scenarios.

Açıklama

Anahtar Kelimeler

Advanced driver assistance systems, Advanced driver-assist technologies, Automotive components, Automotive exterior lighting systems, Autonomous vehicles, Autonomous vehicle technologies, Channel models, Channel noise level, Communication, Curved road scenarios, Curves (road), Distance measurement, Estimation, Headlights, Indoor visible, Information management, Intelligent systems, Intelligent transportation systems, Laser radar, Laser signals, LED, LED lamps, LİDAR, LiDAR system, Light, Light emitting diodes, Light detection and ranging systems, Networking, Optical communication, Optical radar, Optical signal detection, Performance, RADAR, RADAR system, Radio detection and ranging, Radio detection and ranging system, Radio frequency, Ray tracing, Real time systems, Real-time information, Road safety, Road traffic, Road vehicles, Roads

Kaynak

IEEE Transactions on Vehicular Technology

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

68

Sayı

11

Künye

Abuella, H., Miramirkhani, F., Ekin, S., Uysal, M., & Ahmed, S. (2019). ViLDAR-visible light sensing-based speed estimation using vehicle headlamps. IEEE Transactions on Vehicular Technology, 68(11), 10406-10417. doi:10.1109/TVT.2019.2941705