• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Disaster damage assessment of buildings using adaptive self-similarity descriptor

Thumbnail

View/Open

Publisher's Version (1.511Mb)

Date

2016-08

Author

Ateş, Hasan Fehmi
Kahraman, Fatih
İmamoğlu, Mümin

Metadata

Show full item record

Citation

Kahraman, F., İmamoğlu, M. & Ateş, H. F. (2016). Disaster damage assessment of buildings using adaptive self-similarity descriptor. IEEE Geoscience and Remote Sensing Letters, 13(8), 1188-1192. doi:10.1109/LGRS.2016.2574960

Abstract

Assessment of damage caused by a disaster is significant for coordinating emergency response teams and planning emergency aid. In this letter, a robust method for rapid building damage assessment is proposed using pre- and postevent EO images and building footprints. The method uses a local self-similarity descriptor (SSD) for change detection in buildings, which is shown to be robust against variations in global illumination and small local deformations. The use of building footprints helps reduce the false alarms due to changes in nonbuilding areas. Footprint is also used to differentiate small and large buildings, extract the boundary region of a building, and adapt the descriptor computation accordingly. It is shown that the adaptive SSD provides a more accurate measure of local damage on the building. The 2010 Haiti Earthquake and Typhoon Haiyan 2013 Philippines are analyzed with the proposed method, and 75/82% true positive rate and 25/15% false positive rate are obtained for detection of collapsed buildings with respect to the ground truth data of UNITAR/UNOSAT and HOT.

Source

IEEE Geoscience and Remote Sensing Letters

Volume

13

Issue

8

URI

https://hdl.handle.net/11729/1129
http://dx.doi.org/10.1109/LGRS.2016.2574960

Collections

  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering [181]
  • Scopus İndeksli Makale Koleksiyonu [916]
  • WoS İndeksli Makale Koleksiyonu [933]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.