• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • Öğe Göster
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-hypothesis contextual modeling for semantic segmentation

Thumbnail

Göster/Aç

Publisher's Version (1.076Mb)

Tarih

2019-01-01

Yazar

Ateş, Hasan Fehmi
Sünetci, Sercan

Üst veri

Tüm öğe kaydını göster

Künye

Ateş, H. F. & Sünetci, S. (2019). Multi-hypothesis contextual modeling for semantic segmentation. Pattern Recognition Letters, 117, 104-110. doi:10.1016/j.patrec.2018.12.011

Özet

Semantic segmentation (i.e. image parsing) aims to annotate each image pixel with its corresponding semantic class label. Spatially consistent labeling of the image requires an accurate description and modeling of the local contextual information. Segmentation result is typically improved by Markov Random Field (MRF) optimization on the initial labels. However this improvement is limited by the accuracy of initial result and how the contextual neighborhood is defined. In this paper, we develop generalized and flexible contextual models for segmentation neighborhoods in order to improve parsing accuracy. Instead of using a fixed segmentation and neighborhood definition, we explore various contextual models for fusion of complementary information available in alternative segmentations of the same image. In other words, we propose a novel MRF framework that describes and optimizes the contextual dependencies between multiple segmentations. Simulation results on two common datasets demonstrate significant improvement in parsing accuracy over the baseline approaches.

Kaynak

Pattern Recognition Letters

Cilt

117

Bağlantı

https://hdl.handle.net/11729/1482
http://dx.doi.org/10.1016/j.patrec.2018.12.011

Koleksiyonlar

  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering [181]
  • Scopus İndeksli Makale Koleksiyonu [935]
  • WoS İndeksli Makale Koleksiyonu [946]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Işık

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliIşık Yazarına GöreKünyeye GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliIşık Yazarına GöreKünyeye Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || Işık Üniversitesi || OAI-PMH ||

Işık Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Şile, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Creative Commons License
Işık Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.