• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Bildiri Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Bildiri Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model adaptation for dialog act tagging

Thumbnail

View/Open

Publisher's Version (111.9Kb)

Date

2006

Author

Tür, Gökhan
Güz, Ümit
Hakkani Tür, Dilek

Metadata

Show full item record

Citation

Tür, G., Güz, Ü. & Hakkani Tür, D. (2006). Model adaptation for dialog act tagging. Paper presented at the 2006 IEEE ACL Spoken Language Technology Workshop, SLT 2006, Proceedings, 94-97. doi:10.1109/SLT.2006.326825

Abstract

In this paper, we analyze the effect of model adaptation for dialog act tagging. The goal of adaptation is to improve the performance of the tagger using out-of-domain data or models. Dialog act tagging aims to provide a basis for further discourse analysis and understanding in conversational speech. In this study we used the ICSI meeting corpus with high-level meeting recognition dialog act (MRDA) tags, that is, question, statement, backchannel, disruptions, and floor grabbers/holders. We performed controlled adaptation experiments using the Switchboard (SWBD) corpus with SWBD-DAMSL tags as the out-of-domain corpus. Our results indicate that we can achieve significantly better dialog act tagging by automatically selecting a subset of the Switchboard corpus and combining the confidences obtained by both in-domain and out-of-domain models via logistic regression, especially when the in-domain data is limited.

Source

2006 IEEE ACL Spoken Language Technology Workshop, SLT 2006, Proceedings

URI

https://hdl.handle.net/11729/2005
https://dx.doi.org/10.1109/SLT.2006.326825

Collections

  • MF - Bildiri Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering [222]
  • Scopus İndeksli Bildiri Koleksiyonu [462]

Related items

Showing items related by title, author, creator and subject.

  • Pros and cons of using building information modeling in the AEC industry 

    Seyis Kazazoğlu, Senem (ASCE-AMER Soc Civil Engineers, 2019-08-01)
    Although a plethora of studies on building information modeling (BIM) have been conducted in the last decade, none of the previous studies collate and/or prioritize the benefits, risks, and challenges of BIM based on the ...
  • Immitance data modelling via linear interpolation techniques: a classical circuit theory approach 

    Yarman, Bekir Sıddık Binboğa; Kılınç, Ali; Aksen, Ahmet (Wiley-Blackwell, 2004-11)
    With the advancement of the manufacturing technologies to produce new generation analog/digital communication systems, immitance data modelling has gained renewed importance in the literature. Specifically, models are ...
  • An incremental model selection algorithm based on cross-validation for finding the architecture of a Hidden Markov model on hand gesture data sets 

    Yıldız, Olcay Taner; Ulaş, Aydın (IEEE, 2009-12-13)
    In a multi-parameter learning problem, besides choosing the architecture of the learner, there is the problem of finding the optimal parameters to get maximum performance. When the number of parameters to be tuned increases, ...



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.