• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deri lezyonlarının evrişimsel yapay sinir ağları ile sınıflandırılması

Thumbnail

View/Open

Publisher's Version (855.6Kb)

Date

2022-07-10

Author

Bilginer, Onur
Tunga, Burcu
Demirer, Rüştü Murat

Metadata

Show full item record

Citation

Bilginer, O., Tunga, B. & Demirer, R. M. (2022). Deri lezyonlarının evrişimsel yapay sinir ağları ile sınıflandırılması. Pamukkale University Journal of Engineering Sciences, 28(2), 208-214. doi:10.5505/pajes.2021.68700

Abstract

Bu çalışmada Uluslararası Deri Görüntüleme Birliği tarafından 2019 yılında yayınlanan ve 25000’den fazla dermoskopik deri görüntüsü içeren ISIC 2019 veri seti kullanılarak 4 çeşit (Melanom, Melanositik Nevüs, Bazal Hücreli Karsinom, İyi Huylu Keratoz) deri pigmentasyonu Evrişimsel Sinir Ağları yöntemi yardımıyla sınıflandırılmıştır. Sınıflandırma yapılırken InceptionV3 yapay sinir ağı mimarisi kullanılmıştır. Deri görüntülerine önişlem olarak Hilbert Dönüşümü ve Yüksek Boyutlu Model Gösterilimi uygulanmıştır. Elde edilen sonuçlara göre test verisi üzerinde Hilbert Dönüşümü uygulanmış görüntülerde Bazal Hücreli Karsinom hastalığının sınıflandırılmasında %89 başarı oranı elde edilmiştir. Yüksek Boyutlu Model Gösterilimi ile Kontrast Artırımı uygulanan görsellerde ise Melanomun sınıflandırılmasında %78 başarı oranı elde edilmiştir.
 
In this paper we classified 4 skin lesions (Melanoma,Melanocytic Nevus, Basal Cell Carcinoma, Benign keratosis) from ISIC 2019 dataset which was published by International Skin Imaging Collabration in 2019. We used InceptionV3 convolutional neural network model for classification. We applied two preprocessing methods: High Dimensional Model Representation (HDMR) and Hilbert Transform. In conclusion we obtained 89% accuracy on classification of Basal Cell Carcinoma using Hilbert Transform. Moreover, we obtained 78% accuracy on classification of Melanoma using Contrast Enhancement High Dimensional Model Representation (HDMR).
 

Source

Pamukkale University Journal of Engineering Sciences

Volume

28

Issue

2

URI

https://hdl.handle.net/11729/4819
http://dx.doi.org/10.5505/pajes.2021.68700
https://search.trdizin.gov.tr/yayin/detay/524931

Collections

  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering [181]
  • TR-Dizin İndeksli Makale Koleksiyonu [200]
  • WoS İndeksli Makale Koleksiyonu [929]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.