Retinal disease diagnosis in OCT scans using a foundational model
dc.authorid | 0009-0007-4212-5484 | |
dc.authorid | 0000-0001-6309-4524 | |
dc.authorid | 0000-0002-8649-6013 | |
dc.authorid | 0000-0001-7013-5451 | |
dc.authorid | 0000-0001-8619-8078 | |
dc.authorid | 0009-0004-3598-4326 | |
dc.authorid | 0000-0002-1793-2600 | |
dc.contributor.author | Nazlı, Muhammet Serdar | en_US |
dc.contributor.author | Turkan, Yasemin | en_US |
dc.contributor.author | Tek, Faik Boray | en_US |
dc.contributor.author | Toslak, Devrim | en_US |
dc.contributor.author | Bulut, Mehmet | en_US |
dc.contributor.author | Arpacı, Fatih | en_US |
dc.contributor.author | Öcal, Mevlüt Celal | en_US |
dc.date.accessioned | 2025-08-29T10:51:18Z | |
dc.date.available | 2025-08-29T10:51:18Z | |
dc.date.issued | 2025 | |
dc.department | Işık Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Doktora Programı | en_US |
dc.department | Işık University, School of Graduate Studies, Ph.D. in Computer Engineering | |
dc.description | This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Number 122E509. | en_US |
dc.description.abstract | This study examines the feasibility and performance of using single OCT slices from the OCTA-500 dataset to classify DR (Diabetic Retinopathy) and AMD (Age-Related Macular Degeneration) with a pre-trained transformer-based model (RETFound). The experiments revealed the effective adaptation capability of the pretrained model to the retinal disease classification problem. We further explored the impact of using different slices from the OCT volume, assessing the sensitivity of the results to the choice of a single slice (e.g., “middle slice”) and whether analyzing both horizontal and vertical cross-sectional slices could improve outcomes. However, deep neural networks are complex systems that do not indicate directly whether they have learned and generalized the disease appearance as human experts do. The original dataset lacked disease localization annotations. Therefore, we collected new disease classification and localization annotations from independent experts for a subset of OCTA-500 images. We compared RETFound’s explainability-based localization outputs with these newly collected annotations and found that the region attributions aligned well with the expert annotations. Additionally, we assessed the agreement and variability between experts and RETFound in classifying disease conditions. The Kappa values, ranging from 0.35 to 0.69, indicated moderate agreement among experts and between the experts and the model. The transformer-based RETFound model using single or multiple OCT slices, is an efficient approach to diagnosing AMD and DR. | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu | en_US |
dc.description.version | Publisher's Version | |
dc.identifier.citation | Nazlı, M. S., Turkan, Y., Tek, F. B., Toslak, D., Bulut, M., Arpacı, F. & Öcal, M. C. (2025). Retinal disease diagnosis in OCT scans using a foundational model. Paper presented at the Lecture Notes in Computer Science, 15618 LNCS, 208-220. doi:https://doi.org/10.1007/978-3-031-88220-3_15 | en_US |
dc.identifier.doi | 10.1007/978-3-031-88220-3_15 | |
dc.identifier.endpage | 220 | |
dc.identifier.isbn | 9783031882197 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.scopus | 2-s2.0-105005655724 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 208 | |
dc.identifier.uri | https://hdl.handle.net/11729/6679 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-031-88220-3_15 | |
dc.identifier.volume | 15618 LNCS | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Turkan, Yasemin | en_US |
dc.institutionauthorid | 0000-0001-6309-4524 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | |
dc.publicationstatus | Published | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Öğrenci | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Age related macula degeneration | en_US |
dc.subject | Diabetic retinopathy | en_US |
dc.subject | Explainability | en_US |
dc.subject | OCT | en_US |
dc.subject | Retinal disease diagnosis | en_US |
dc.subject | Transformer | en_US |
dc.subject | Ophthalmology | en_US |
dc.subject | Age-related macula degenerations | en_US |
dc.subject | Age-related macular degeneration | en_US |
dc.subject | Diabetic retinopathy | en_US |
dc.subject | Disease diagnosis | en_US |
dc.subject | Localisation | en_US |
dc.subject | Retinal disease | en_US |
dc.subject | Retinal disease diagnose | en_US |
dc.subject | Deep neural networks | en_US |
dc.title | Retinal disease diagnosis in OCT scans using a foundational model | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | en_US |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: