• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generative and discriminative methods using morphological information for sentence segmentation of Turkish

Thumbnail

View/Open

Publisher's Version (626.1Kb)

Date

2009-07

Author

Güz, Ümit
Favre, Benoit
Hakkani Tür, Dilek
Tür, Gökhan

Metadata

Show full item record

Citation

Güz, Ü., Favre, B., Hakkani Tür, D. & Tür, G. (2009). Generative and discriminative methods using morphological information for sentence segmentation of turkish. IEEE Transactions on Audio, Speech, and Language Processing, 17(5), 895-903. doi:10.1109/TASL.2009.2016393

Abstract

This paper presents novel methods for generative, discriminative, and hybrid sequence classification for segmentation of Turkish word sequences into sentences. In the literature, this task is generally solved using statistical models that take advantage of lexical information among others. However, Turkish has a productive morphology that generates a very large vocabulary, making the task much harder. In this paper, we introduce a new set of morphological features, extracted from words and their morphological analyses. We also extend the established method of hidden event language modeling (HELM) to factored hidden event language modeling (fHELM) to handle morphological information. In order to capture non-lexical information, we extract a set of prosodic features, which are mainly motivated from our previous work for other languages. We then employ discriminative classification techniques, boosting and conditional random fields (CRFs), combined with fHELM, for the task of Turkish sentence segmentation.

Source

IEEE Transactions on Audio Speech and Language Processing

Volume

17

Issue

5

URI

https://hdl.handle.net/11729/326
http://dx.doi.org/10.1109/TASL.2009.2016393

Collections

  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering [181]
  • Scopus İndeksli Makale Koleksiyonu [935]
  • WoS İndeksli Makale Koleksiyonu [946]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.